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Quantum thermodynamics of systems with anomalous dissipative coupling
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The standardsystem-plus-reservoirapproach used in the study of dissipative systems can be meaningfully
generalized to a dissipative coupling involving the momentum, instead of the coordinate: the corresponding
equation of motion differs from the Langevin equation, so this is calledanomalousdissipation. It occurs for
systems where such coupling can indeed be derived from the physical analysis of the degrees of freedom that
can be treated as a dissipation bath. Starting from the influence functional corresponding to anomalous dissi-
pation, it is shown how to derive the effective classical potential that gives the quantum thermal averages for
the dissipative system in terms of classical-like calculations; the generalization to many degrees of freedom is
given. The formalism is applied to a single particle in a double well and to the discretef4 model. At variance
with the standard case, the fluctuations of the coordinate are enhanced by anomalous dissipative coupling.
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I. INTRODUCTION

Thesystem-plus-reservoir~SPR! model@1–5# is the most
common and effective approach to the treatment of quan
dissipation. This model realistically assumes the dissipa
in a system as due to the interaction with a reservoir~or bath,
or environment!: anyone of the numerous degrees of fre
dom of the reservoir is only weakly perturbed, so the res
voir is at thermal equilibrium; moreover, in order to repr
duce the general phenomenological dynamics~quantum
Langevin equation for the coordinate! it is sufficient to as-
sume a linear interaction and a bath of harmonic oscilla
@4#, so that in the imaginary-time path-integral formalism
is possible to integrate out the bath variables and get a
duced description of the system in terms of a bilocalinflu-
ence action@5#. Starting from this framework, in previou
papers we obtained the classical effective potential for
calculation of thermal averages in a dissipative quantum
tem @6# and gave applications to thef4-chain model@7# and
to a two-dimensional array of Josephson junctions@8#.

At variance with the standard approach of coupling
bath with the system’s coordinate, we consider in this pa
the complementary possibility of a coupling with the m
mentum, that Leggett calledanomalous dissipation@9#. In
this case the dynamics can be reduced to a pseudo-Lang
equation where the dissipative term contains the second
rivative of the potential. This raises the question whether
can recognize the dissipation mechanism just from the p
nomenological behavior: we believe that one should hav
physically meaningful microscopic model for the bath rath

*Electronic address: cuccoli@fi.infn.it
†Electronic address: fubini@fi.infn.it
‡Electronic address: tognetti@fi.infn.it
§Electronic address: vaia@fi.cnr.it
1063-651X/2001/64~6!/066124~13!/$20.00 64 0661
m
n

-
r-

rs

e-

e
s-

e
er

vin
e-
e
e-
a
r

than rely upon the phenomenological counterpart. The c
of anomalous dissipation occurs, for instance, when the
fect of the blackbody electromagnetic field on a Joseph
junction is considered@10#.

As for thermodynamics, we will show that theanomalous
influence action can be derived following the origina
Feynman-Vernon@11# idea, which, due to the momentum
path dependence, can be pursued at the price of involving
full phase-space path integral.

The main goal of this paper is in the treatment of this p
integral within the effective-potential formalism@12# that re-
duces the evaluation of quantum-dissipative thermal av
ages to much simpler classical-like configuration integra
This is accomplished also in the case of many degree
freedom, making quantitative calculations feasible. In g
eral, the inclusion of dissipation by coupling the system
momenta with the environment results in higher quant
fluctuations of the coordinates, while those of the mome
are suppressed.

We introduce in Sec. II the concept of anomalous dissi
tion; it turns out that the influence action depends on
momentum path and it is hence necessary to use the Ha
tonian path integral. In Sec. III we treat it within the pur
quantum self-consistent harmonic approximation@12#, deriv-
ing the classical effective potential and the correspond
classical-like expressions for quantum thermal averages
the case of many degrees of freedom the treatment is sim
fied by the additional ‘‘low-coupling’’ approximation. Even
tually, in Sec. IV we show how the framework works for th
single particle in a double-well potential and for thef4

chain.

II. FROM STANDARD TO ANOMALOUS DISSIPATION

The standardSPR Hamiltonian has the form

Ĥ5
p̂2

2m
1V~ q̂!1

1

2 (
l

F p̂l
2

ml

1ml v l
2 ~ q̂l 2q̂!2G , ~1!
©2001 The American Physical Society24-1
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where p̂ and q̂ are the momentum and coordinate of t
‘‘system’’ ~here, one single particle in the one-dimension
potentialV), while p̂l andq̂l are those of thel th degree of
freedom of the reservoir. It is quite a general result@4# that a
suitable distribution of the bath parameters$ml ,v l % ~see
Appendix A! can reproduce, when the bath variables
eliminated from the equations of motion, the most gene
quantum Langevin equation, namely,

mq̈̂1E
2`

t

dt8g~ t2t8! q̇̂~ t8!1V8~ q̂!5F̂~ t !. ~2!

Since it does not explicitly contain the ‘‘microscopic’’ de
grees of freedom, the Langevin equation constitutes a m
roscopic description of the dissipative system with a cl
phenomenological meaning, in the sense that the mem
function g(t) can be thought to be determined experime
tally. The thermodynamic density matrix for the standa
SPR model at the equilibrium temperatureT5b21 has the
path-integral expression~A2!, where dissipation is describe
by the additionalinfluence action

SI@q~u!#5E
0

b\du

2\E0

b\du8

b\
k~u2u8!q~u!q~u8!, ~3!

and the Matsubara transform of the kernelk(u) is directly
related to the Laplace transform of the memory function
kn5unnug̃(unnu), wherenn52pn/b\. For a harmonic poten
tial one obtains for the density matrix the exact result~A5!,
so it appears that standard dissipation quenches^q̂2& and
rises^ p̂2&. This breaks the canonical symmetry between
coordinate and the momentum, and is obviously a con
quence of the bath being coupled to the coordinate in
standard SPR model~1!. In the general case of a nonline
interactionV(q) the evaluation of the path integral~A2! for
the SPR model becomes quite complicated and was the
ject of Refs.@6# and@7#, where a classical effective potenti
suitable to reduce the problem to classical-like express
was introduced as a generalization of the original appro
of Refs.@13# and @14#.

The different case ofanomalousdissipation occurs when
the SPR model is modified including the momentum in
place of the coordinate in the interaction with the reserv
The dependence upon the bath coordinates and momen
quadratic, so they can be exchanged at will and theanoma-
lous SPR Hamiltonian can be written

Ĥ5
p̂2

2m
1V~ q̂!1

1

2 (
l

F ~ p̂l 2 p̂!2

ml

1ml v l
2 q̂l

2 G . ~4!

It is immediately seen that Eq.~22! of Ref. @10#, regarding a
single Josephson junction interacting with the blackbo
electromagnetic field~in the dipole approximation!, can be
cast exactly in this form, constituting a first physical exam
of the relevance of treating anomalous dissipation.
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Let us look at the dynamics of the system~4!: as in the
standard SPR case, one can derive the equations of mo
and then eliminate the bath variables. The result is a pseu
Langevin equation,

mq̈̂1mE
2`

t

dt8h~ t2t8!] t8V8„q̂~ t8!…1V8~ q̂!5F̂~ t !.

~5!

To interpret Eq.~5!, observe that in the classical limit on
has ] t8V8„q(t8)…5V9„q(t8)…q̇(t8), so that in the neighbor-
hood of the stable minimum, whereV9(q);mv2 tends to a
positive constant, it reduces to the standard form of
Langevin equation~2!; for a harmonic potential this alway
occurs. The physical difference is that the full damping fun
tion g(t)5m2v2h(t) depends on the system’s mass and p
tential, not barely on the reservoir’s characteristics, so t
the frictional force depends on how the system’s mot
arises, which prevents a simple phenomenological interp
tation @4#. On the same footing, the concept of anomalo
dissipation was considered by Caldeira and Leggett~see Ap-
pendix C of Ref.@3#! and further analyzed by Leggett@9#.
Their purpose was to establish that in the context of tunn
ing problems the standard SPR model~1! ~with a possible
coupling to a nonlinear function of the coordinate! is the
most general one to be considered in order to infer the eff
of damping from a knowledge of the phenomenological q
siclassical dissipative equation~2!; therefore, they rule out
the anomalous case as it can give a negative friction co
cient (V9,0) in the pseudo-Langevin equation over much
the tunneling region, which would lead to qualitatively di
ferent results. On the other hand, since the pseudo-Lang
equation reduces to the Langevin one in the dynam
asymptotic region~i.e., close to the equilibrium configura
tion!, a purely phenomenological approach to dissipat
based on the dynamical linear response cannot disting
whether the underlying dissipative mechanism is of the st
dard or of the anomalous type, while this distinction play
fundamental role in the quantum statistical mechanics. Ho
ever, rather than being a schematization for a phenome
logical dissipative behavior, the mechanism can happen t
determined from a physically sound microscopic model t
can have the form~4!: once such microscopic SPR Hami
tonian is known, there is no point in trying to reduce it to
phenomenological description. Although examples can
given of how anomalous dissipation can arise just rein
preting the canonical variables in a standard SPR sys
~e.g., a linear dissipative system as a simple RLC circuit@9#,
using the canonical symmetry between magnetic flux a
charge!, it is more significant that the anomalous dissipati
mechanism is obtained on amicroscopicbasis for Josephson
junctions, when quantum electromagnetic fluctuations
considered in the dipole approximation@10#.

In order to get a first insight about the dissipation effe
onto the thermodynamics, let us consider the harmonic os
lator. In Appendix B the analytic solution is easily obtaine
using the canonical symmetry between coordinate and
mentum. At variance with the standard case, it appears
anomalous dissipation quenches the fluctuation of the
4-2
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QUANTUM THERMODYNAMICS OF SYSTEMS WITH . . . PHYSICAL REVIEW E64 066124
mentum, Eq.~B9!, and enhances those of the coordinate,
~B10!, as it is expected since the environment now perfor
a ‘‘measurement’’ of the momentum. This kind of behavior
expected also when the system is subjected to a nonli
potential @9#, but in this case the evaluation of quantum
dissipative thermal averages is by no means straightforw
and one has to resort to some approximation scheme.
purpose of the following Section is indeed to derive the
fective classical potential and the related prescriptions in
der to evaluate the system’s thermodynamic averages fo
anomalous SPR model~4!.

In writing the path integral for the density matrix corr
sponding to the Hamiltonian~4!, it appears that in order to
integrate out the bath variables one must resort to the
phase-space formulation for the system, so that the mom
tum pathp(u) enters the interaction with the bath. Indee
theanomalousinfluence action turns out to be~see Appendix
C!

SI@p~u!#5E
0

b\du

2\E0

b\du8

b\
k~u2u8!p~u!p~u8!, ~6!

and the kernelk(u)5(nkneinnu is now directly related to
the Laplace transform of the memory functionh(t) as

kn5unnuh̃~ unnu!. ~7!

Note thatk(u) is periodic and, sincekn5k2n , also even,
one has the propertiesk(u)5k(2u)5k(u1b\); in addi-
tion k050, meaning that the influence action does not
clude a local component, which trivially renormalizes t
mass.

For the phase-space path integral it is convenient to
the symmetric~Weyl! ordering prescription@15,16#. The
Weyl symbol for the density operator can, therefore, be w
ten as

r~p,q!5E D@pu ,qu#exp$2S@pu ,qu#2SI@pu#%, ~8!

where for compactness the arguments are indicated as
scripts, and the nondissipative part of the system’s ac
reads

S@pu ,qu#5E
0

b\du

\ F i

2
~quṗu2puq̇u!1

pu
2

2m
1V~qu!G

1
i

2\
~q0pb2p0qb!1

i

\
@~qb2q0!p

2~pb2p0!q#. ~9!

Note that the argumentsp andq do appear explicitly in the
action, while there are no constraints upon the paths; in
ticular, the end points (p0 , pb , q0 , qb) are also integrated
over @15#. The thermal average of an observableÔ can be
written in terms of its Weyl symbol

O~p,q!5E dxe2 ipx/\K q1
x

2UÔUq2
x

2L ~10!
06612
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^Ô&5
1

ZE dpdq

2p\
r~p,q!O~p,q!. ~11!

III. EFFECTIVE POTENTIAL

A. One degree of freedom

The strategy@12# to approximate the density~8! is to use
the quadratic trial actionS0@pu ,qu ;q̄# expressed as Eq.~9!,
with V(qu) replaced by the trial ‘‘potential’’

V0~qu ;q̄!5w~ q̄!1
1

2
mv2~ q̄!~qu2q̄!2, ~12!

which is indeed a functional through its dependence on
path’s average point

q̄@qu#5E
0

b\ du

b\
qu , ~13!

and to optimize its parametersw(q̄) andv2(q̄).
The reduced density

r̄0~p,q;q̄!5E D@pu ,qu#dS q̄2E
0

b\ du

b\
quD

3exp$2S0@pu ,qu ;q̄#2SI@pu#% ~14!

collects the contribution of classes of paths that share
same average pointq̄, so the path integral~8! for the trial
actionS0 can be cast into the form

r0~p,q!5E dq̄ r̄0~p,q;q̄!. ~15!

What we are going to do is to optimize the reduced den
r̄. This is an important point, that justifies the accuracy of
approximation: we choose the best approximating Gaus
distribution for theseparatecontribution of each class o
paths~labeled byq̄), which describes the purely quantum
dissipative contribution to the fluctuations around any ‘‘cla
sical’’ configurationq̄. In other words, the classical fluctua
tions are accounted for exactly.

The reduced density can be evaluated analytically: by
cluding the constraint for the variableq̄ in the action through
the Fourier representation of the Diracd function, it is pos-
sible to get an integral expression in terms of the dissipa
harmonic oscillator density matrix. In Appendix D we repo
the actual calculations that lead to the final result, which i
Gaussian distribution in (p,q),

r̄0~p,q;q̄!5A2pm

b
e2bVeff(q̄)

e2p2/2l

A2pl

e2(q2q̄)2/2a

A2pa
,

~16!

where the effective potential reads
4-3
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CUCCOLI, FUBINI, TOGNETTI, AND VAIA PHYSICAL REVIEW E 64 066124
Veff~ q̄!5w~ q̄!1
1

b
m~ q̄!, ~17!

with

m~ q̄!5 (
n51

`

ln
nn

21~11mkn!v2~ q̄!

nn
2

, ~18!

and the relevant variances are

l~ q̄!5
m

b (
n52`

`
v2~ q̄!

nn
21~11mkn!v2~ q̄!

, ~19!

a~ q̄!5
2

mb (
n51

`
11mkn

nn
21~11mkn!v2~ q̄!

; ~20!

apart from the dependence on the variational param
v2(q̄), these variances have the harmonic-oscillator for
~B9! and~B10! with the important difference thata lacks the
n50 term, i.e., its classical contribution.

We introduce, henceforth, the coordinate fluctuation va
able j5q2q̄ in the place ofq and the following double-
bracket notation for the Gaussian averages over the varia
p andj defined byr̄0:

^̂ p2&&5l~ q̄!^̂ j2&&5a~ q̄!. ~21!

The physical interpretation of the above formulas becom
transparent if one expresses the resulting approximation
the thermal average~11! using Eqs.~15! and ~16!, namely,

^Ô&5
1

ZA m

2p\2b
E dq̄e2bVeff(q̄) ^̂ O~p,q̄1j!&&; ~22!

the average overj accounts for the nonclassical fluctuatio
of the coordinate, while the classical part is accounted
exactly by the classical-like expression for the thermo
namic average; the average overp takes into account the ful
fluctuation, since its classical contribution is exactly Gau
ian. The detailed discussion made in Ref.@12# applies to this
case as well, provided one takes into account that the co
bution of the dissipative nonlocal action is also accounted
by the variancesl anda.

The last point concerns the optimization of the parame
w(q̄) and v2(q̄). This can be performed imposing that th
trial and the true potential~and their derivatives up to th
second one! have the samer̄0 average@16,12#

^̂ V~ q̄1j!&&5w~ q̄!1
1

2
mv2~ q̄!a~ q̄!, ~23!

^̂ V9~ q̄1j!&&5mv2~ q̄!, ~24!

while the condition for the first derivative is trivial, since
linear term;(q2q̄) in V0 does not contribute to the actio
by the very definition of the average point. Equation~24! is a
self-consistent equation that identifies the parameterv2(q̄),
06612
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while the determination ofw(q̄) in Eq. ~23! permits to re-
write the effective potential as

Veff~ q̄!5 ^̂ V~ q̄1j!&&2
1

2
mv2~ q̄!a~ q̄!1

1

b
m~ q̄!. ~25!

The differential operator

D5
1

2
a~ q̄!] q̄

2 , ~26!

understood as not operating onto its coefficient, is such
DF(q̄)5 ^̂ F(q̄1j)&&, and allows us to rewrite the effectiv
potential in a more compact way,

Veff~ q̄!5~12D!eDV~ q̄!1
1

b
m~ q̄!. ~27!

It appears that the first term gives corrections of ordera2 to
the potential, while first order renormalizations arise fro
the last term.

B. Many degrees of freedom

Let us now consider a general system withN degrees of
freedom, i.e., canonical coordinate and momentum opera
q̂5$q̂i% i 51, . . . ,N andp̂5$ p̂i% i 51, . . . ,N , with the commutation
relations @ q̂i ,p̂ j #5 id i j ~we set \51 in this section!, and
described by a Hamiltonian with a quadratic kinetic ener
and a nonlinear potential term,

Ĥ5
1

2
tp̂A2p̂1V~ q̂!. ~28!

The real matrixA25$Ai j
2 % is symmetric,tA5A, and positive

definite. The influence action for anomalous dissipation ta
the form

SI@p~u!#5E
0

bdu

2 E
0

bdu8

b
tp~u!K~u2u8!p~u8!, ~29!

where the kernel matrixK(u)5$k i j (u)% is a real symmetric
matrix that replaces the scalar kernelk(u) of the single-
particle case; as a function ofu it keeps its symmetry and
periodicity, K(u)5K(2u)5K(b2u), and satisfies
*0

bduK(u)50. For instance, in the case ofN independent
identical baths coupled to each momentump̂i one simply has
a diagonal kernel,k i j (u)5d i j k(u); this case will be consid-
ered for the application shown in Sec. IV C.

The Weyl symbol for system’s density matrix is express
as anN-dimensional integral,

r~p,q!5E dq̄ r̄~p,q;q̄!, ~30!

in terms of the reduced density collecting the contributio
of paths sharing the average configurationq̄,
4-4
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r̄~p,q;q̄!5E D@pu ,qu#dS q̄2E
0

bdu

b
quD

3exp$2S@pu ,qu ;p,q#2S@pu ,qu ;q̄#2SI@pu#%;

~31!

here the action is separated in a part containing the exte
variables (p,q),

S@pu ,qu ;p,q#5E
0

b

duF i

2
~ tquṗu2 tpuq̇u!G

1
i

2
~ tq0pb2 tp0qb!

1 i @ t~qb2q0!p2 t~pb2p0!q#, ~32!

and the part containing the system’s Hamiltonian,

S@pu ,qu ;q̄#5E
0

b

duF1

2
tpuA2pu1V~qu!G . ~33!

In order to evaluate the effective potential, the trial actionS0
is defined asS by replacingV(qu) by

V0~qu ;q̄!5w~ q̄!1
1

2
t~qu2q̄!B2~ q̄!~qu2q̄!, ~34!

with a real symmetric matrixB2(q̄). The calculation of the
correspondingr̄0, reported in Appendix E, is not a trivia
extension of that for one degree of freedom, but can t
advantage of the results obtained in Ref.@7# for the standard
SPR model.

The simplest way for writing the final result is to give th
expression of the thermal average of a generic observabÔ
in terms of its Weyl symbolO(p,q). This fundamental for-
mula approximates quantum averages by means o
classical-like expression with the effective potentialVeff ,

^Ô&5
1

Z S 1

2pb D N/2 1

detA E dq̄e2bVeff(q̄) ^̂ O~p,q̄1j!&&,

~35!

where^̂ •&& is the Gaussian average over the variablesp and
j determined byr̄0, as reported in Eq.~E10!, and can be
uniquely defined through its moments

^̂ j tj&&5C~ q̄!5
2

b (
n51

`

B21
Cn

nn
21Cn

B21, ~36!

^̂ p tp&&5L~ q̄!5
1

b (
n52`

`

B
1

nn
21Cn

B, ~37!

whose components are therenormalization coefficientsand

Cn~ q̄!5B~A21Kn!B. ~38!

The effective potential reads
06612
al

e
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Veff~ q̄!5w~ q̄!1
1

b
m~ q̄!, ~39!

with

m~ q̄!5 (
n51

`

ln
det~nn

21Cn!

nn
2N

. ~40!

To determine the parametersw(q̄) andB(q̄) we require, as in
Eqs.~23! and~24!, that the parameters of the trial action a
such to match ther̄0 averages of the original and the tria
potential, and the same for their second derivatives:

^̂ V~ q̄1j!&&5w~ q̄!1
1

2
Tr@B2~ q̄!C~ q̄!#, ~41!

^̂ ]qi
]qj

V~ q̄1j!&&5Bi j
2 ~ q̄!. ~42!

The latter equation together with Eq.~36! self-consistently
determines the solution for the matricesB(q̄) and C(q̄). Its
matrix character makes it useful to introduce the ‘‘low
coupling’’ approximation~LCA!, in the very same way of
Ref. @7#, so it is sufficient to write here the final results. Ifq̄0

is the configuration that minimizesVeff(q̄), one has the LCA
effective potential

Veff~ q̄!5eDV~ q̄!2DeDV~ q̄0!1b21m, ~43!

wherem5m(q̄0) and the operator

D5
1

2 (
i j

Ci j ] q̄i
] q̄ j

, ~44!

with C[C(q̄0), is such thateDV(q̄)5 ^̂ V(q̄1j)&& ~within the
LCA!. Therefore, Eqs.~36! and ~42! have to be solved only
for the minimum configuration, with a great simplificatio
In the simplest case of translation invariance an orthogo
Fourier transformationU5$Uki% diagonalizes all matrices,

mk
21dkk85(

i j
UkiUk8 jAi j

2 , ~45!

mkvk
2dkk85(

i j
UkiUk8 jBi j

2 , ~46!

kn,kdkk85(
i j

UkiUk8 jkn,i j , ~47!

so that

m5(
k

(
n51

`

ln
nn

21~11mkkn,k!vk
2

nn
2

; ~48!

the renormalization coefficients of Eqs.~36! and ~37! be-
come
4-5
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L i j 5(
k

UkiUk jlk , Ci j 5(
k

UkiUk jak , ~49!

where the variances of thekth mode,

lk5
mk

b (
n52`

` vk
2

nn
21~11mkkn,k!vk

2
, ~50!

ak5
2

bmk
(
n51

`
11mkkn,k

nn
21~11mkkn,k!vk

2
, ~51!

generalize those of Eqs.~19! and~20!; for instance, the ‘‘on-
site’’ renormalization coefficientD[Cii can be simply ex-
pressed asD5 ^̂ j i

2&&5N21(kak . The partition function and
thermal averages are to be evaluated by means of Eq.~35!,
where, of course, the effective potential and the doub
bracket average are to be understood as the LCA ones.
that, since the LCAL ’s do not depend onq̄, averages of
observables involving only momenta are trivially evaluat
as ^O(p̂)&5 ^̂ O(p)&&.

IV. APPLICATIONS

A. Drude response model

In the case ofOhmic dissipationthe memory is Markov-
ian, h(t)5hd(t20), corresponding toh̃(z)5h5const and
then tokn}unu, so one can see that the coordinate fluctuat
a(q̄), Eq. ~20!, is divergent, as well asm(q̄), Eq. ~18!. This
is due to the unphysical assumption of a vanishing respo
time from the dissipation bath; in the standard SPR mo
such divergence@3,5–7# only affects the momentum fluctua
tion, leaving the possibility to meaningfully evaluate therm
averages of coordinate-dependent quantities@6#. As when
considering momentum-dependent quantities@7# in the stan-
dard case, in the anomalous SPR model we are there
forced to take into account the finite bath’s response tim

The Drude model of an exponentially decaying memo

h~ t !5Q~ t !hvDe2vDt, h̃~z!5
hvD

vD1z
~52!

is the simplest one that is physically meaningful: the cons
h characterizes the strength of the coupling with the diss
tion bath, while the Drude frequencyvD characterizes its
bandwidth (vD

21 is the response time!; the Ohmic limit oc-
curs forvD→`.

B. Single particle in the double well

Given a potentialV(q), it is convenient to provide a di
mensionless formulation by identifying characteristic ene
and length scales,e ands. The first one could be a barrie
height or a well depth, the latter is such that the change oV
over its scale is comparable toe. The dimensionless coordi
nate isx̂5q̂/s and the dimensionless potentialv(x) is such
that V(sx)5ev(x). If xm is the absolute minimum ofv(x)
and v9[v9(xm), the harmonic approximation~HA! of the
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system is characterized by the frequencyv05Aev9/ms2;
the ratio between the HA quantum energy level splitting\v0
and the overall energy scalee defines the dimensionless cou
pling parameter

g5
\v0

e
5A \2v9

mes2
. ~53!

Therefore, the system is weakly~strongly! ‘‘quantum’’ when
g is small~large! compared to 1. Defining the dimensionle
momentump̂x5s p̂/\, such that@ x̂,p̂x#5 i , the nondissipa-
tive part of the Hamiltonian~4! reads

ĤS

e
5

g2

v9

p̂x
2

2
1v~ x̂!. ~54!

In what follows, energies are given in units ofe, lengths in
units ofs, frequencies in units ofv0, and so on; the dimen
sionless temperature ist51/(eb).

As for the dissipation part, to make contact with the ph
nomenological behavior, note that the asymptotic damp
function from the classical limit of the pseudo-Langev
equation~5! is V9h̃(z)5mv0

2h̃(z) and has the dimension o
a frequency@it is indeed the counterpart ofg̃(z)/m of the
standard SPR model#, so for the Drude form~52! we will
deal with the corresponding dimensionless input parame

ĥ5mv0h, v̂D5vD /v0 . ~55!

The dimensionless termmkn reads then

mkn5ĥv̂D

pn

pn1 f D
[an , ~56!

where f D5b\vD/25(g/2t)v̂D.
Using the dimensionless parameter

f ~x!5
b\v~x!

2
5

g

2t

v~x!

v0
~57!

in the place ofv(x), from the definitions~18!, ~19!, and~20!
we obtain

m~x!5 (
n51

`

ln
~pn!21~11an! f 2~x!

~pn!2
, ~58!

l~x!5
v9t

g2 (
n52`

`
f 2~x!

~pn!21~11an! f 2~x!
, ~59!

a~x!5
g2

2v9t
(
n51

`
11an

~pn!21~11an! f 2~x!
, ~60!

wherel5 ^̂ px
2&&.

The example we choose here is the double-well poten

v~x!5~12x2!2, ~61!
4-6
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which has two degenerate symmetric minima inxm561
with v958. From Eqs.~27! and ~24! we obtain

veff~x!5~12x2!223a2~x!1tm~x!, ~62!

f 2~x!5
g2

8t2
@3x213a~x!21#. ~63!

Equation ~63! has to be solved self-consistently with E
~60!: we did this numerically; exact reference data can
obtained only for the nondissipative limitĥ50, e.g., by nu-
merically solving the Schro¨dinger equation.

In Fig. 1 we report the shape of the coordinate probabi
distributionP(x)5^d( x̂2x)&, for selected values of the dis
sipation strengthĥ and bandwidthv̂D, at the couplingg
52; this gives a ground state energye050.697 97, with the
next excited level ate151.046 37, above the barrier. Whe
dissipation is switched on,P(x) tends to go farther away
from the classical distributionPc;e2v(x)/t due indeed to the
enhanced fluctuations of the coordinate, and the two-pea
structure is eventually lost. This happens by rising eitheĥ
or v̂D: note the strong influence of the latter in increasing
fluctuations, which diverge in the Ohmic limitv̂D→`. The
figure also reports the opposite result for the standard d
pative model, obtained as in Ref.@6#, which clearly shows
the suppression of the coordinate fluctuations towards
classical distribution.

Typical results found for the average potential ene
v(t)5^v(x)& are displayed in Fig. 2. In the nondissipativ
case, comparison with the exact data shows that the effec
potential gives very accurate results, in spite of the stro
coupling. The curves for the anomalous dissipative sys

FIG. 1. Configuration densityP(x)5^d( x̂2x)& of the double-
well quartic potential forg52, t51, and different values of the
damping parameters:ĥ51, 2 ~as indicated on the picture!, and
v̂D51 ~long-dashed lines! and 5~short-dashed lines!. The solid line
is the nondissipative effective potential result forĥ50, that agrees
with the corresponding exact result~filled circles!; the dotted curve
corresponds to the classical limit, and the dash-dotted curve rep
the result of the standard SPR model from Ref.@6# for an Ohmic
dissipative strengthĝ[g/(mv0)55.
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show an increase of the potential energy, correspondin
the higher fluctuations of the coordinate, while for the sta
dard SPR model the opposite occurs.

C. f4 chain

The quantumf4 chain with standard dissipation wa
studied in Ref.@7#; the effective potential approach was pr
viously applied in the nondissipative case@17,12# and
checked through quantum Monte Carlo simulations@18#. It
can be viewed as the discretized version of a continuum n
linear field theory, described by the~undamped! Lagrangian

L5Ga(
i 51

N F q̇i
2

2
2

c2

2a2
~qi2qi 21!21

V2

8
v~qi !G , ~64!

wherea is the chain spacing,c is the ‘‘relativistic’’ velocity,
V is the gap of the bare dispersion relation,G is a constant
with the dimension~mass3 length!, and periodic boundary
conditions ensure translation symmetry. The local nonlin
potential

v~x!5~12x2!2 ~65!

has two wells inxm561 @with v9(xm)58], so that the clas-
sicalf4 chain has two degenerate translation-invariant m
mum configurations,$qi51% and$qi521%, as well as rela-
tive minima connecting the two wells, the static ‘‘kinks.’’ I
the continuum limitia→z the kink configuration is indeed
q(z)56tanh@V(z2z0)/c#, so that it is localized with a char
acteristic lengthc/V and its energy is«K52GVc/3.

The ratio between the characteristic frequencyV of the
quasiharmonic excitations of the system and the energy s
«K defines the quantum coupling parameterQ5V/«K
53/(2Gc); the discreteness of the chain is measured by
kink length in lattice units,R5c/(Va) (R→` in the con-
tinuum limit!. Moreover,t[T/«K is the reduced temperatur
used from now on. The most interesting features app

rts

FIG. 2. Average potential energŷd( x̂)& of the double-well
quartic potential vs reduced temperaturet, for g52 and different
values ofĥ and v̂D. Curves and symbols as in Fig. 1.
4-7



e

th

al
a

-

an
3
n

t

na
ve
al

W

a
ra

er

e of
ere

lcu-
In

r-

ent

ed

-
g to
de
e-

s of
ipa-

re-

he
e
r of
tive

are

-

t
b

the
t

CUCCOLI, FUBINI, TOGNETTI, AND VAIA PHYSICAL REVIEW E 64 066124
when kinks are excited in the system; for instance, th
cause a peak in the classical specific heat att;0.2.

Using the dimensionless quantities just introduced,
Weyl symbol for the undampedf4 Hamiltonian can be writ-
ten as

H
«K

5
Q2R

3 (
i 51

N

pi
21V~q! ~66!

V~q!

«K
5

3

2R (
i 51

N FR2

2
~qi2qi 21!21

v~qi !

8 G , ~67!

where the momenta are such that@ q̂i ,p̂ j #5 id i j , and Eq.~45!
givesmk

2152Q2R«K/3[m21.
As for dissipation,N identical independent environment

baths coupled to each momentum are assumed, giving
agonal kernel matrixkn,i j 5d i j kn , so Eq. ~47! gives kn,k

5kn . We takekn5unnuh̃(unnu) with the Drude form~52! for
h̃; the dimensionless quantitymkkn,k5mkn[an can even-
tually be written as in Eq.~56!, so that the dissipation is
characterized by the dimensionless parametersv̂D5vD /V
and ĥ53h/(2QR)

From Eqs.~42! and ~46! the LCA renormalized frequen
cies are found to be

vk
25V2@123D~ t !14R2 sin2~k/2!#, ~68!

while the relevant renormalization coefficientD(t)[Cii fol-
lows from Eqs.~49! and ~51!,

D~ t !5
Q2R

3t

1

N (
k

(
n51

`
11an

~pn!21~11an! f k
2

, ~69!

where f k5bvk/25(Q/2t)@123D(t)14R2 sin2(k/2)#; these
two self-consistent equations can be solved numerically,
it appears that the approximation is meaningful whenD
!1. Eventually, the LCA effective potential can be writte
as the original one, just replacing the local interactionv(x)
by

veff~x!5@123D~ t !2x2#216D2~ t !1tm̃~ t !, ~70!

with

m̃~ t !5
16R

3

1

N (
k

(
n51

`

ln
~pn!21~11an! f k

2

~pn!2
. ~71!

For any parameter set (t, Q, R, ĥ, v̂D) the self-consisten
computation ofD and hence of the last term ofm̃, which
takes a negligible computer time using a continuum termi
tion of then summation, completely determines the effecti
potentialveff(x). The problem is then ready for a numeric
evaluation of Eq.~35!, which gives the partition function
~settingÔ51) and the thermal averages of observables.
employed the numerical transfer matrix technique@19# that
reduces the configuration integral for a one-dimensional
ray with nearest-neighbor interaction to a secular integ
equation. The evaluation of the latter is implemented num
06612
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cally using a discrete mesh for the values of each degre
freedom. Temperature scans over the region of interest w
performed and several thermodynamic quantities were ca
lated, taking the value ‘‘per site’’ for the extensive ones.
particular, the internal energyu(t)5 f (t)2t] t f (t) and the
specific heatc(t)5] tu(t)52t] t

2f (t) follow from the free
energy per site,f (t)52N21t lnZ(t) by numerical deriva-
tion, while Eq.~35! was used to calculate the thermal ave
age of the squared site coordinate^q̂i

2& and of the local po-
tential ^v(q̂i)&, the square nearest-neighbor displacem
^(q̂i2q̂i 21)2&, and the square momentum̂p̂i

2&. The quanti-
ties reported in Figs. 3, 4, and 5 are evaluated for fix
values of the kink lengthR55 and of the quantum coupling
Q50.2, which give fairly strong quantum effects. For com
parison, we also report the classical result correspondin
Q50. Moreover, a fixed representative value of the Dru
cutoff frequencyv̂D51 is used, in order to analyze the d
pendence upon the dissipation strengthĥ.

As we already remarked, the pure-quantum fluctuation
the coordinate are made stronger by the anomalous diss
tive coupling. This appears in Fig. 3, where the pu
quantum renormalization coefficientD(t)5 ^̂ j i

2&& of Eq. ~69!
is reported for different values ofĥ, starting from the non-
dissipative valueĥ50. The temperature dependence of t
coefficientD(t) affects the effective potential and the fre
energy, allowing us to describe how the classical behavio
thermal averages is affected by both quantum and dissipa
effects.

In Fig. 4 the temperature behavior of the mean-squ
fluctuations of the site coordinate^q̂i

2& is reported. Att50,
in the classical case the coordinate lies in the minima$qi

2

51% of the potential~67!, while in the quantum nondissipa
tive case the value att50 is smaller,^q̂i

2&5123D.0.84:
this corresponds to the minima ofveff(q) and reflects the fac
that quantum fluctuations make the configuration to clim
the barrier rather than the steeper walls. Switching on
temperature enhances the same effect and^q̂i

2& decreases a

FIG. 3. Renormalization coefficientD(t) @Eq. ~69!# vs reduced
temperaturet, for different values of the damping strengthĥ, at
fixed coupling parameterQ50.2, kink lengthR55, and Drude
cutoff frequency v̂D51. Solid line, ĥ50 ~undamped!; short-
dashed line,ĥ51; long-dashed line,ĥ52; dash-dotted line,ĥ
55. Note thatD(t) increases whenĥ increases.
4-8
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QUANTUM THERMODYNAMICS OF SYSTEMS WITH . . . PHYSICAL REVIEW E64 066124
finite temperature, until when att*0.5 many kinks are ex-
cited in the system and the coordinate distribution begin
spread towards the walls, causing the subsequent incr
from a minimum value;0.56 att;0.45, eventually collaps
ing onto the classical curve. At variance with the case
standard dissipation@7#, when the damping strengthĥ is
switched on, a further enhancement of the distribution spr
occurs: this could be qualitatively interpreted as an effec
increase of the quantum coupling and allows^q̂i

2& to reach
smaller values, at smaller temperature.

On the other hand, the fluctuations of the momenta
quenched by dissipation, and the role of the damping effe
is nonpredictable on a simple basis if one considers ther
dynamic quantities where both coordinates and momenta
ter into play. One of these is the specific heatc(t). Its non-
linear part, namely, its total value minus the correspond

FIG. 4. Mean-square fluctuations of the coordinate opera
^q̂i

2& vs reduced temperaturet. Parameters and lines as in Fig.
The dotted line represents the classical result (Q50).

FIG. 5. Nonlinear contribution to the specific heat, defined
dc(t)5c(t)2cH(t) ~times the kink lengthR), vs reduced tempera
ture t. Parameters and lines as in Fig. 3. The dotted line repres
the classical result (Q50). Increasingĥ, dc(t) goes farther away
from the classical behavior, as ifQ were raised@17#.
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~dissipative! harmonic contribution,dc(t)5c(t)2cH(t), is
very sensitive to the nonlinearity of the system, since
value is zero in a harmonic approximation. The fact that o
approach retains all classical nonlinear features is crucia
gettingdc, whose temperature behavior is reported in Fig.
Switching on and increasing the strength of the environm
tal couplingĥ the curves can be seen to go farther apart fr
the classical one, which is a nontrivial result. A physic
explanation is that anomalous dissipation increases the
certainty in the kink positions, substantially making the
longer and effectively raising their mutual interaction.

V. CONCLUSIONS

In this paper we have discussed the problem ofanoma-
lous dissipation, previously considered by Leggett@9#, and
derived the effective potential formalism for an interacti
many-body system with this kind of dissipation, which c
arise from a microscopic description of the system-bath c
pling, as done, for instance, in Ref.@10#.

Our approach allows one to reduce quantum mechan
thermodynamic calculations to a classical-like configurat
integral, where both quantum and dissipative effects are
cluded. In order to deal with many degrees of freedom
necessarylow-couplingapproximation has been introduce
The latter, if the system’s symmetries are exploited, result
very simple expressions for the renormalization coefficie
appearing in the theory. This is shown in detail for the ca
of translation symmetry.

Applications of the framework have been made to t
single particle in a double-well potential and to a discretef4

one-dimensional field, whose strong nonlinearity yields ki
excitations that play a dominant role. In both examples
Drude-like spectrum of the environmental coupling has be
chosen for dissipation, and its influence on thermal quanti
has been analyzed.

The effective potential is a unique tool for dealing wi
such a system, since any approximate theory must retain
strong nonlinearity, which mainly has a classical charac
and this rules out conventional perturbative approaches.
method proved to be useful for the above model systems
it is expected that it will find application in up-to-date phys
cal problems. A possible application of the formalism rega
the effect of the blackbody electromagnetic field@10# onto
the phase diagram of two-dimensional Josephson junc
arrays.
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APPENDIX A: STANDARD SPR MODEL

Eliminating the bath variables from the equations
motion for the standard SPR model~1! one gets @4#
the Langevin equation~2!, where the coupling with
the bath is described by the memory functiong(t)
5Q(t)( l ml v l

2 cos(vl t), whose Laplace transform is

r

s

ts
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g̃~z!5(
l

ml v l
2 z

z21v l
2

, ~A1!

and by the Gaussian random forceF̂(t), whose time correla-
tors can be expressed in terms of the memory function
spectral relations@4# depending on the bath’s temperature

The quantum thermodynamics, after the bath has b
‘‘traced out’’ in the path-integral for the system~1!, is de-
scribed by the density matrix@5#

r~q9,q8!5E
q8

q9D@q~u!#exp$2S@q~u!#2SI„q~u!…%,

~A2!

S@q~u!#5E
0

b\du

\ Fm

2
q̇2~u!1V@q~u!#G ~A3!

andSI given in Eq.~3!; the Matsubara transform of the ke
nel k(u) reads

kn5E
0

b\ du

b\
k~u!e2 innu5(

l
ml v l

2
nn

2

nn
21v l

2
~A4!

and is thus given bykn5unnug̃(unnu). For a harmonic poten
tial, V(q)5mv2q2/2, the evaluation of the path integral ca
be performed exactly and the density matrix turns out to b
Gaussian with partition function and variances as follo
@5#:

ZH5
1

b\v )
n51

`
nn

2

nn
21v21kn /m

,

^ p̂2&H5
m

b (
n52`

`
v21kn /m

nn
21v21kn /m

,

^q̂2&H5
1

bm (
n52`

`
1

nn
21v21kn /m

. ~A5!

In the nondissipative limit,kn→0, the summations give
the well-known results ZH51/(2 sinhf), ^q̂2&H

5(\/2mv)cothf, and ^ p̂2&H5(\mv/2)cothf, with f
5b\v/2.

APPENDIX B: ANOMALOUS SPR MODEL

From the Hamiltonian~4! we get the equations of motio

mq̈̂1V8~ q̂!5(
l

m

ml
@ml v l

2 q̂l 2V8~ q̂!#, ~B1!

ml ~ q̈̂l 1v l
2 q̂l !5V8~ q̂!; ~B2!

the second one has the general solutionq̂l (t)5q̂l
h (t)

1q̂l
p (t), with the retarded form of the particular solution
06612
y

en
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s

ml v l
2 q̂l

p ~ t !5V8„q̂~ t !…2E
2`

t

dt8 cos@v l ~ t2t8!#

3] t8V8„q̂~ t8!…, ~B3!

and the homogeneous solution

q̂l
h ~ t !5q̂l cos~v l t !1

p̂l

ml v l

sin~v l t !. ~B4!

Inserting this result in Eq.~B1! one gets Eq.~5!, where

h~ t !5Q~ t !(
l

1

ml

cos~v l t !, ~B5!

while the fluctuating force term

F̂~ t !5m(
l

v l
2 q̂l

h ~ t ! ~B6!

is a Gaussian random process, whose correlations arise
the assumption that the initial values$q̂l ,p̂l % correspond to
the equilibrium at the temperatureT5b21 for the isolated
bath, namely, ^q̂l q̂l 8&5d l l 8(\/2ml v l )coth(b\vl /2),
^ p̂l p̂l 8&5d l l 8(\ml v l /2)coth(b\vl /2), ^q̂l p̂l 8&
5d l l 8i\/2.

The thermal density matrix for the harmonic oscillato
V(q)5mv2q2/2, can be evaluated reducing the problem
the standard-dissipation one, just by performing the cano
cal transformationq̂→2 p̂/(mv) and p̂→mvq̂; to get ex-
actly the same form of Eq.~1! it is sufficient to replacep̂l

→mvq̂l , q̂l →2 p̂l /(mv), and ml →(mv)2/(ml v l
2 ).

One finds, of course, Eqs.~A5! with the exchange of the
expressions ^q̂2&H→(mv)22^ p̂2&H and ^ p̂2&H

→(mv)2^q̂2&H. Due to the above redefinition of the ba
masses $ml %, the kernel ~A4! takes the form kn
5(mv)2kn , with

kn5(
l

1

ml

nn
2

nn
21v l

2
, ~B7!

so eventually one has

ZH5
1

b\v )
n51

`
nn

2

nn
21~11mkn!v2

~B8!

^ p̂2&H5
m

b (
n52`

`
v2

nn
21~11mkn!v2

, ~B9!

^q̂2&H5
1

mb (
n52`

`
11mkn

nn
21~11mkn!v2

. ~B10!
4-10
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APPENDIX C: ANOMALOUS INFLUENCE ACTION

For the bath part of Eq.~4! the Feynman-Kac expressio
in terms of the momentum can be used: the definition of
influence action is, therefore,

e2SI[ p(u)]5
1

ZB
)

l
R D@pl ~u!#exp„2SB@$pl ~u!%#…,

~C1!

whereZB5) l (2 sinhvl )21 is the partition function of the
isolated bath, and the bath action reads

SB5E
0

b\du

\ (
l

1

2ml v l
2 @ ṗl

2 ~u!1v l
2 $pl ~u!2p~u!%2#.

~C2!

Performing the Fourier transformation into Matsubara co
ponentsp(u)5(npneinnu @and same forpl (u)] one gets

SB5(
l

b

2ml v l
2 (

n
@nn

2upl nu21v l
2 upl n2pnu2#

5(
l

b

2ml v l
2 (

n
F ~nn

21v l
2 !u p̃l nu21

nn
2v l

2

nn
21v l

2
upnu2G ,

~C3!

where the variable shiftp̃l n5pl n2@v l
2 /(nn

21v l
2 )#pn has

been performed. The path integral overp̃l (u) gives just the
partition functionZB, so one is left with theanomalousin-
fluence action

SI@p~u!#5
b

2 (
n52`

`

knupnu2, ~C4!

i.e., Eq. ~6!, wherekn is again given by Eq.~B7!, so that
comparing with the Laplace transform of the memory fun
tion ~B5!,

h̃~z!5(
l

1

ml

z

z21v l
2

, ~C5!

one haskn5unnuh̃(unnu) , i.e. Eq.~7!.

APPENDIX D: EVALUATION OF r̄0 FOR ONE DEGREE
OF FREEDOM

Let us start from the definition~14! of the reduced density
in terms of the system’s trial action, given by Eq.~9! with the
trial potential~12!,

\S05E
0

b\

duF i

2
~quṗu2puq̇u!1

pu
2

2m
1w1

mv2~qu2q̄!2

2 G
1

i

2
~q0pb2p0qb!1 i @~qb2q0!p2~pb2p0!q#,

~D1!
06612
e

-

-

and of the dissipative action~6!. In the calculations,q̄ is to
be regarded as a fixed parameter and we can omit to exp
the dependence ofw and v2 on it. Performing the shiftqu

→q̄1qu and using the Fourier representation

dS E
0

b\ du

b\
quD 5bmv2E dz

2p
expS E

0

b\du

\
imv2zquD

~D2!

one gets

r̄0~p,q;q̄!5bmv2e2bwE dz

2p E D@pu ,qu#

3exp$2S1@pu ,qu ;q̄#2SI@pu#%, ~D3!

\S15E
0

b\

duF i

2
~quṗu2puq̇u!1

pu
2

2m
1

mv2qu
2

2
2 imv2zquG

1
i

2
~q0pb2p0qb!1 i @~qb2q0!p2~pb2p0!j#,

~D4!

wherej[q2q̄. To eliminate the linear term we shift now
qu→qu1 iz,

r̄0~p,q;q̄!5bmv2e2bwE dz

2p
e2bmv2z2/2

3E D@pu ,qu#exp$2S2@pu ,qu ;q̄#2SI@pu#%,

~D5!

so thatS2 is the harmonic-oscillator action,

\S25E
0

b\

duF i

2
~quṗu2puq̇u!1

pu
2

2m
1

mv2qu
2

2 G
1

i

2
~q0pb2p0qb!1 i @~qb2q0!p

2~pb2p0!~j2 iz!#. ~D6!

Now, the point is to get rid of the path integral appearing
Eq. ~D5!, which represents the Weyl symbol for the dens
operator of the harmonic oscillator with the dissipative a
tion SI@pu#. However, the result for the harmonic oscillat
with anomalous dissipation is known from Eqs.~B8!, ~B9!,
and ~B10!,

rH~p,q!5
2pe2m

bv

e2p2/2lT

A2plT

e2q2/2aT

A2paT

, ~D7!

where the partition function from Eq.~B8! is written asZ
5e2m/(b\v) andm given as in Eq.~18!. One gets, there-
fore,
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r̄0~p,q;q̄!5bmv2e2bwE dz

2p
e2bmv2z2/2rH~p,j2 iz!.

~D8!

This last Gaussian convolution affects the coordinate p
and results in a Gaussian forj with the pure-quantum vari
ancea5aT21/(mv2b) reported in Eq.~20!: what is sub-
tracted is just the classical contribution, i.e., then50 term in
Eq. ~B10!. The final result is just Eq.~16!.

APPENDIX E: EVALUATION OF r̄0 FOR MANY
DEGREES OF FREEDOM

We evaluate here the path integral~31! with the trial ac-
tion S0 @i.e., Eq. ~33! with the ‘‘potential’’ ~34!#; the fixed
argument ofw(q̄) and of the matrixB(q̄) is omitted in the
following. First, thed function is represented as

dS q̄2E
0

bdu

b
quD 5det~bB2!E dz

~2p!N

3expH i E
0

b

du tzB2~qu2q̄!J , ~E1!

and the exponential can be incorporated into the actionS0;
then, performing the shiftqu→qu1q̄1 iz and introducing the
fluctuation variablej5q2q̄ one gets

r̄0~p,q;q̄!5
e2bw

detCC
E dz

~2p!N
expS 2

1

2
tzCC

21zD rHA~p,j2 iz!,

~E2!

whereCC
21[bB2 and

rHA~p,q!5E D@pu ,qu#exp$2S@pu ,qu ;p,q#2S1@pu ,qu ;q̄#

2SI@pu#%, ~E3!

with

S15E
0

bdu

2
@ tpuA2pu1 tquB2qu#. ~E4!
E

06612
rt

The path integral~E3! corresponds to the density matrix of
harmonic system with anomalous dissipation,rHA(p,q). The
canonical exchangequ→pu and pu→2qu has the effect of
turning the dissipation into standard,SI@pu#→SI@qu#; per-
forming the same transformation onto the external variab
(p,q) and exchanging the matricesA2↔B2, an exact corre-
spondence with the standard dissipative harmonic syste
established,rHA(p,q)5rHS(q,2p), and the known result for
a harmonic system with standard dissipation@7# can be used,
eventually getting

rHA~p,q!5
e2mH

det~bAB!

expF2
1

2
tqCH

21qG
A~2p!NdetCH

expF1

2
tpLH

21pG
A~2p!NdetLH

,

~E5!

where

mH5 (
n51

`

ln
det~nn

21Cn!

nn
2N

, ~E6!

CH5
1

b (
n52`

`

B21
Cn

nn
21Cn

B21, ~E7!

LH5
1

b (
n52`

`

B
1

nn
21Cn

B, ~E8!

and

Cn5B@A21Kn#B. ~E9!

Eventually, the Gaussian convolution in Eq.~E2! washes out
the n50 component ofC, leaving

r̄0~p,q;q̄!5S 1

2pb D N/2 1

detA
exp$2b@w~ q̄!1m~ q̄!#%

3

expF2
1

2
tqC21qG

A~2p!NdetC

expF1

2
tpL21pG

A~2p!NdetL
, ~E10!

whereC5CH2CC andL5LH.
B
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