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Quantum thermodynamics of systems with anomalous dissipative coupling
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The standaraystem-plus-reservoapproach used in the study of dissipative systems can be meaningfully
generalized to a dissipative coupling involving the momentum, instead of the coordinate: the corresponding
equation of motion differs from the Langevin equation, so this is caleomalousdissipation. It occurs for
systems where such coupling can indeed be derived from the physical analysis of the degrees of freedom that
can be treated as a dissipation bath. Starting from the influence functional corresponding to anomalous dissi-
pation, it is shown how to derive the effective classical potential that gives the quantum thermal averages for
the dissipative system in terms of classical-like calculations; the generalization to many degrees of freedom is
given. The formalism is applied to a single particle in a double well and to the disgfateodel. At variance
with the standard case, the fluctuations of the coordinate are enhanced by anomalous dissipative coupling.
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[. INTRODUCTION than rely upon the phenomenological counterpart. The case
of anomalous dissipation occurs, for instance, when the ef-
The system-plus-reservo{SPR model[1-5] is the most  fect of the blackbody electromagnetic field on a Josephson
common and effective approach to the treatment of quanturdyinction is considere10]. _
dissipation. This model realistically assumes the dissipation AS for thermodynamics, we will show that tiamomalous

in a system as due to the interaction with a resert@ibath, ?fluence SC“On claln .(?e de;:yehd JOIIO){N"]{% the or|gt|nal
or environment anyone of the numerous degrees of free- eynman-Vernori11] idea, which, due to the momentum-

dom of the reservoir is only weakly perturbed, so the reserpath dependence, can be pursued at the price of involving the

voir is at thermal equilibrium; moreover, in order to repro- full phase-space path integral.
d ’ i ’ P The main goal of this paper is in the treatment of this path
duce the general phenomenological dynamigsiantum

. on for th 9 fici integral within the effective-potential formalispd2] that re-
Langevin equation for the coordinat is sufficient to as-  y,ces the evaluation of quantum-dissipative thermal aver-

sume a linear interaction and a bath of harmonic oscillatorgges to much simpler classical-like configuration integrals.
[4], so that in the imaginary-time path-integral formalism it Thjs js accomplished also in the case of many degrees of
is possible to integrate out the bath variables and get a rgreedom, making quantitative calculations feasible. In gen-
duced description of the system in terms of a bilocdlu-  eral, the inclusion of dissipation by coupling the system’s
ence action[5]. Starting from this framework, in previous momenta with the environment results in higher quantum
papers we obtained the classical effective potential for théluctuations of the coordinates, while those of the momenta
calculation of thermal averages in a dissipative quantum sysare suppressed.
tem[6] and gave applications to thg*-chain mode[7] and We introduce in Sec. Il the concept of anomalous dissipa-
to a two-dimensional array of Josephson junctifBis tion; it turns out that the influence action depends on the
At variance with the standard approach of coupling themomentum path and it is hence necessary to use the Hamil-
bath with the system’s coordinate, we consider in this papetonian path integral. In Sec. Ill we treat it within the pure-
the complementary possibility of a coupling with the mo- quantum self-consistent harmonic approximafida], deriv-
mentum, that Leggett callednomalous dissipatiofd]. In  ing the classical effective potential and the corresponding
this case the dynamics can be reduced to a pseudo-LangeiffSsical-like expressions for quantum thermal averages; in
equation where the dissipative term contains the second dgi‘e case of many degrees of freedom the treatment is simpli-
rivative of the potential. This raises the question whether ond€d Py the additional “low-coupling” approximation. Even-
can recognize the dissipation mechanism just from the phet—L.Ja"y' n SE:'C' IV we show how the framework works for the
nomenological behavior: we believe that one should have amg_le particle in a double-well potential and for th

physically meaningful microscopic model for the bath ratherCham

Il. FROM STANDARD TO ANOMALOUS DISSIPATION
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where p and g are the momentum and coordinate of the Let us look at the dynamics of the systé#): as in the
“system” (here, one single particle in the one-dimensionalstandard SPR case, one can derive the equations of motion
potentialV), while p, andq, are those of the'th degree of ~and then eliminate the bath variables. The result is a pseudo-
freedom of the reservoir. It is quite a general refdtthat a  Langevin equation,

suitable distribution of the bath parametdrs,,w,} (see t

Appendix A can reproduce, when the bath variables are % P e 4 (At 1Ay B

el?r';inated from the %quations of motion, the most general mq+mf_mdt 7= )a V@) FVI@=FO).
guantum Langevin equation, namely, (5)

) ; ) To interpret Eq.(5), observe that in the classical limit one
qu+J dt’ y(t—t)g(t") +V'(§)=F(t). (20 hasdV'(q(t’))=V"(q(t"))q(t"), so that in the neighbor-
o hood of the stable minimum, whek&'(q) ~ mw? tends to a
positive constant, it reduces to the standard form of the
Since it does not explicitly contain the “microscopic” de- Langevin equatior2); for a harmonic potential this always
grees of freedom, the Langevin equation constitutes a ma®ccurs. The physical difference is that the full damping func-
roscopic description of the dissipative system with a cleaiion y(t)=m?w?7(t) depends on the system’s mass and po-
phenomenological meaning, in the sense that the memorgntial, not barely on the reservoir's characteristics, so that
function y(t) can be thought to be determined experimen-the frictional force depends on how the system’s motion
tally. The thermodynamic density matrix for the standardarises, which prevents a simple phenomenological interpre-
SPR model at the equilibrium temperatife 3~ has the tation[4]. On the same footing, the concept of anomalous
path-integral expressiof\2), where dissipation is described dissipation was considered by Caldeira and Leg@ete Ap-
by the additionainfluence action pendix C of Ref.[3]) and further analyzed by Leggd®].
Their purpose was to establish that in the context of tunnel-
sidu (ehdy’ ing plfoblems the ?tanda;d SER m]?cjrl]e) (with;_l gqssirt:le
= — | —k(u-u’ ' coupling to a nonlinear function of the coordingis the
Sta(w] o 2h Bt k(u=uawaw), G most general one to be considered in order to infer the effects
of damping from a knowledge of the phenomenological qua-

and the Matsubara transform of the kerkél) is directly siclassical dissipative equatic(ﬁ)_; therefore,_they_ rL_JIe out _
related to the Laplace transform of the memory function adn® ano,tnaloqs case as it can give a negative friction coeffi-
Kn=|vn|7(lvnl), wherev,=27n/B%. For a harmonic poten- cient (V" <0) in the pseudo-Langevin equation over much of
tial one obtains for the density matrix the exact re$af) the tunneling region, which would lead to qualitatively dif-
so it appears that standard dissipation quendligs an(’j ferent results. On the other hand, since the pseudo-Langevin

! a5 ) _ equation reduces to the Langevin one in the dynamical
rises(p®). This breaks the canonical symmetry between the,qy mntotic region(i.e., close to the equilibrium configura-

coordinate and the momentum, and is obviously a conse&;qpn) "4 purely phenomenological approach to dissipation
quence of the bath being coupled to the coordinate in thg,geq on the dynamical linear response cannot distinguish

standard SPR modél). In the general case of a nonlinear \ypether the underlying dissipative mechanism is of the stan-
interactionV(q) the evaluation of the path integréh2) for 4414 or of the anomalous type, while this distinction plays a

the SPR model becomes quite complicated and was the SURjndamental role in the quantum statistical mechanics. How-
ject of Refs[6] and[7], where a classical effective potential ever, rather than being a schematization for a phenomeno-

suitable to reduce the problem to classical-like expressiong,qicq) dissipative behavior, the mechanism can happen to be
was introduced as a generalization of the original approacgtermined from a physically sound microscopic model that

of Refs.[13] and[14]. o can have the forng4): once such microscopic SPR Hamil-
The different case oanomalouddissipation occurs when  y4nian js known, there is no point in trying to reduce it to a

the SPR model is modified including the momentum in theyhenomenological description. Although examples can be
place of the coordinate in the interaction with the reservoir,

_ given of how anomalous dissipation can arise just reinter-
The dependence upon the bath coordinates and momentajgaing the canonical variables in a standard SPR system
quadratic, so they can be exchanged at will andahema- (¢ g 3 linear dissipative system as a simple RLC cif@it
lous SPR Hamiltonian can be written using the canonical symmetry between magnetic flux and
charge, it is more significant that the anomalous dissipative
-~ p? 1 (p,—p)? 5 ns mechanism is obtained onnaicroscopicbasis for Josephson
H=5 - TV(@+5 Z T, TMeeydy). (4)  junctions, when quantum electromagnetic fluctuations are
. considered in the dipole approximatipho].
In order to get a first insight about the dissipation effect
It is immediately seen that E¢R2) of Ref.[10], regarding a onto the thermodynamics, let us consider the harmonic oscil-
single Josephson junction interacting with the blackbodylator. In Appendix B the analytic solution is easily obtained
electromagnetic fieldin the dipole approximation can be using the canonical symmetry between coordinate and mo-
cast exactly in this form, constituting a first physical examplementum. At variance with the standard case, it appears that
of the relevance of treating anomalous dissipation. anomalous dissipation quenches the fluctuation of the mo-
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mentum, Eq(B9), and enhances those of the coordinate, Egas

(B10), as it is expected since the environment now performs

a “measurement” of the momentum. This kind of behavior is .. 1 (dpdqg

expected also when the system is subjected to a nonlinear (0)= ZJ 57 P(P.a)O(p.q). (11)

potential [9], but in this case the evaluation of quantum-

dissipative thermal averages is by no means straightforward,

and one has to resort to some approximation scheme. The l. EFFECTIVE POTENTIAL

purpose of the following Section is indeed to derive the ef- A. One degree of freedom

fective classical potential and the related prescriptions in or- . o

der to evaluate the system’s thermodynamic averages for the | N€ Strategy 12] to approximate the densi($) is to use

anomalous SPR modél). th'e guadratic trial ac:tlmso[pu',qu 1q] expressed as Eq9),
In writing the path integral for the density matrix corre- With V(qy) replaced by the trial “potential”

sponding to the Hamiltoniaf), it appears that in order to 1

integrate out the bath variables one must resort to the full Vo(qy:q)=w(q)+ Eme(q)(qu_q)Z, (12)

phase-space formulation for the system, so that the momen-

tum pathp(u) enters the interaction with the bath. Indeed,

the anomalousnfluence action turns out to eee Appendix which is indeed a functional through its dependence on the

C) path’s average point
phdu (Brdu’ afa]= shdu 13
SIPWI= | 55 |, g <U=udpRUY, () atqul= | gr du
and the kernek(u)=3,k,e'""" is now directly related to and to optimize its parameteve(q) and w?(q).
the Laplace transform of the memory functiaiit) as The reduced density
Kn:|Vn|77(|Vn|)- (7 _ 3 [ 1 __ (Bidu
(p,d; =f Dlpy,qulol g— = )
Note thatx(u) is periodic and, since,=«_,, also even, polP.:d Pu-Gule| 9 o Bh i
one has the properties(u) = «x(—u)=«(u+ B#); in addi- —
tion k,=0, meaning that the influence action does not in- X expl— Sol Py du:al = Slpull  (14)
clude a local component, which trivially renormalizes the

mass collects the contribution of classes of paths that share the

For the phase-space path integral it is convenient to use@Me average poir, so the path integral8) for the trial
the symmetric(Weyl) ordering prescription[15,16. The actionS, can be cast into the form
Weyl symbol for the density operator can, therefore, be writ-

ten as po(p.a)= f dqgpo(p.g;q). (15

p(p,q)=f DLpu.Gulexp—S{py.dul = Slpult,  (8) What we are going to do is to optimize the reduced density

p. This is an important point, that justifies the accuracy of the

where for compactness the arguments are indicated as sufipproximation: we choose the best approximating Gaussian
scripts, and the nondissipative part of the system’s actiojistribution for theseparatecontribution of each class of

reads paths(labeled byq), which describes the purely quantum-
sidul'i pz dissipative contribut_ion to the fluctuations around any “clas-
S p, 1CIu]:J —[—(quu—puquH —U+V(Qu) sical” configurationg. In other words, the classical fluctua-
o |2 2m tions are accounted for exactly.

i i The reduced density can be eva_luated analytically: by in-
+ 5 (doPs— Polp) + 7[(Ag—do)P cluding the constraint for the variabégin the action through

2h h the Fourier representation of the Dir@dunction, it is pos-
—(ps—Po)dl. (9) sible to getan integral expressien in terms of_ the dissipative

harmonic oscillator density matrix. In Appendix D we report

Note that the arguments andq do appear explicitly in the the actual calculations that lead to the final result, which is a
action, while there are no constraints upon the paths; in pafsaussian distribution ing,q),
ticular, the end pointsfy, pg, do, dp) are also integrated 5 .,
over [15]. The thermal average of an observallecan be (0. = [27rm o Ver@ e P2 gm(ama)2e
written in terms of its Weyl symbol Po(P.9.q JZan  2ma

(16)

. X X
o(p, =f dxe'PX’ﬁ< +—‘© ——> 10
(p.q) g 2 q 2 (19 where the effective potential reads
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_ _ 1 _ while the determination ofv(q) in Eq. (23) permits to re-
Ver(Q) =w(q)+ Eﬂ(q)- (17 write the effective potential as
with — _ P
Ver(@)=(V(a+ &)~ 5mo(q)a(q) + Eu(q)- (25)
— vt (1+mk,) 0 (q)
o )—n; In V2 ' (18) The differential operator
i 1
and the relevant variances are A 50‘( )(%, 26
_om < wz(a)
MQ):E n;m 2+ (1+miy) 0X(q) (19 Understood as not operating onto its coefficient, is such that
AF(q)={F(q+£)), and allows us to rewrite the effective
2 = 1+ mx potential in a more compact way,
- n
a(qQ)=— — 20
(@) mpg nzl v2+ (1+mkp) 03(q) 20 1

Vei(q)=(1-A)e*V(q) + BM(_)- (27)
apart from the dependence on the variational parameter
w?(q), these variances have the harmonic-oscillator form
(B9) and(B10) with the important difference that lacks the . o o .
— S . L the potential, while first order renormalizations arise from
n=0 term, i.e., its classical contribution. the last term
We introduce, henceforth, the coordinate fluctuation vari- ’
able é&=q—q in the place ofq and the following double-
bracket notation for the Gaussian averages over the variables

St appears that the first term gives corrections of oraéto

B. Many degrees of freedom

p and ¢ defined byp: Let us now consider a general system wihdegrees of
, s _ freedom, i.e., canonical coordinate and momentum operators
PN=NMaD(ED=a(a). ) g={ai}i—r .. nandp={pi}i—1 N, With the commutation

relations[; ,p;]1=i&;; (we setZi=1 in this sectiop and

transparent if one expresses the resulting approximation foarescrlbed by a Hamiltonian with a quadratic kinetic energy

the thermal averagéll) using Eqs.(15) and(16), namely, and a nonlinear potential term,

~ 1
.1 m _ - _ H=="PA%p+ V(). (28)
<0>=§\/2Wﬁ2ﬁ f dge™ Ve D(O(p,a+&)): (22 2

) ~ The real matrixAzz{Aizj} is symmetric!A=A, and positive
the average ovef accounts for the nonclassical fluctuations gefinite. The influence action for anomalous dissipation takes
of the coordinate, while the classical part is accounted fokne form
exactly by the classical-like expression for the thermody-
namic average; the average oyetakes into account the full sdu (Bdu’
fluctuation, since its classical contribution is exactly Gauss- S,[p(u)]=J 7J —p(w)K(u—u")p(u’), (29
ian. The detailed discussion made in H&®] applies to this 0 o B
case as well, provided one takes into account that the contri- ) _ )
bution of the dissipative nonlocal action is also accounted forvhere the kernel matrik(u) ={«;;(u)} is a real symmetric
by the variancea anda. matrix that replaces the scalar kerne{u) of the single-

The last point concerns the optimization of the parameterarticle case; as a function of it keeps its symmetry and
w(q) and »2(q). This can be performed imposing that the Periodicity, K(u)=K(-u)=K(8—u), and satisfies
trial and the true potentialand their derivatives up to the J6duK(u)=0. For instance, in the case OF independent
second onghave the samp, averagd 16,12 identical baths coupled to each momentpyone simply has

a diagonal kernelg;; (u) = &;j k(u); this case will be consid-
_ — 1 ered for the application shown in Sec. IV C.
(Via+&p=w(a)+ > Mw(q)a(q), (23) The Weyl symbol for system’s density matrix is expressed
as anN-dimensional integral,

(V"(@+8))=me*(a), (24

while the condition for the first derivative is trivial, since a p(p,q)=f dap(p.aa),
linear term~ (gq—q) in V, does not contribute to the action

by the very definition of the average point. Equati@d) isa  in terms of the reduced density collecting the contributions
self-consistent equation that identifies the parameféq), of paths sharing the average configuratepn

(30
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__ (Bdu
[
X exp{— S Py, Gy ;P.al—S[py .0y al—Sipul}:
(3D

F(p,q;5)=f D[Py, Gyl

here the action is separated in a part containing the external

variables 0,q),

Bofi
8[pu,qu;p,q]=Jo du 5(‘qupu—tpuqu)}

i
+ E( "0oPs— 'Podip)

+i[(ag—do)p— (Pg—Po)l, (32
and the part containing the system’s Hamiltonian,
_ L
SPu.Gu;dl= fo du 5 PAPHV(Q) | (33

In order to evaluate the effective potential, the trial actign
is defined asS by replacingV(q,) by

I
Vo(Gu; ) =w(Q) + 5'(dy—q)B(A)(du—q), (34

with a real symmetric matriB?(q). The calculation of the

correspondingp,, reported in Appendix E, is not a trivial

PHYSICAL REVIEW B4 066124

_ 1 _
Ver@=w(@ + 7 (@, (39)
with
_ & de(vi+w,)
w@=3 '”VV# (40)

To determine the parametexgq) andB(q) we require, as in
Egs.(23) and(24), that the parameters of the trial action are
such to match the, averages of the original and the trial
potential, and the same for their second derivatives:

_ S
(V(a+g)=w(a)+ ETF[BZ(CI) Cla)], (41)

(9q,0q,V(a+ &)= CHEG (42)
The latter equation together with E(B6) self-consistently
determines the solution for the matricBéq) and C(q). Its
matrix character makes it useful to introduce the “low-
coupling” approximation(LCA), in the very same way of
Ref.[7], so it is sufficient to write here the final results gff

is the configuration that minimizeé.4(q), one has the LCA
effective potential

Ver(@) =e*V(q)—Ae*V(agp) + B u, (43

extension of that for one degree of freedom, but can takvhere = (qp) and the operator

advantage of the results obtained in Hé&f, for the standard
SPR model.

The simplest way for writing the final result is to give the
expression of the thermal average of a generic obserdble

in terms of its Weyl symbolO(p,q). This fundamental for-

1

with C=C(qy), is such thae®V(q) = (V(q+ £€))) (within the

mula approximates quantum averages by means of BCA). Therefore, Eqs(36) and(42) have to be solved only

classical-like expression with the effective potentiak,

11N G —
<O>=§(m) @f dge AVerD(O(p, g+ &)Y,
(39

where((-)) is the Gaussian average over the varialplesd
£ determined byp,, as reported in Eq(E10), and can be
uniquely defined through its moments

)

<<§t§>>=c@=E > B!

52 v B 1, (36)
<<|O‘|O>>=A@=1 i B~ B (37)
B Vﬁ+\lfn ’

whose components are thenormalization coefficientand
W, (q)=B(A%+K,)B. (39

The effective potential reads

for the minimum configuration, with a great simplification.
In the simplest case of translation invariance an orthogonal
Fourier transformatiot={U,;} diagonalizes all matrices,

m;lﬁkk,=; UkiUk’inZju (45)
mkwﬁﬁkk/Z; UkiUk’jBizj y (46)
Kn,kakk’:; UiiUkrjn,ij » (47)
so that
- Vﬁ‘f‘(l‘f‘kanyk)a)E
p=2 2 In ; : (48)

k n=1 Vh

the renormalization coefficients of Eq&6) and (37) be-
come
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system is characterized by the frequenay=\ev"/ma?>;
Ajj :; Uilighi, - Cjj :; Uiy, (49 the ratio between the HA guantum energy level splitting,
and the overall energy scatedefines the dimensionless cou-

where the variances of tHeh mode, pling parameter
* 2 o ﬁzl)”
M=k e , (50 9= - 2 ®3
B n=w vﬁ+(1+ kanyk)wﬁ meo
" Therefore, the system is weaklgtrongly “quantum” when
2 1+mykn i g is small(large compared to 1. Defining the dimensionless

(51)

“k momentump, = op/#, such thatfx,p,]=i, the nondissipa-

Bmy A=1 Vﬁ‘l‘ (1+ kan,k)wE'
tive part of the Hamiltoniari4) reads
generalize those of Eq&L9) and(20); for instance, the “on- .
site” renormalization coefficienD=C,;; can be simply ex- Hs o> i)ﬁ ~
pressed a = (£2)=N"1Z,a,. The partition function and e 12 +o(X). (54)
thermal averages are to be evaluated by means of 354, v
where, of course, the effective potential and the double, \\hat follows, energies are given in units ef lengths in
bracke_t average are to be understood as me LCA ones. NOfgits of o, frequencies in units obo, and so on; the dimen-
that, since the LCAA's do not depend om, averages of  gjonless temperature is- 1/(ef3).
observables involving only momenta are trivially evaluated  ag for the dissipation part, to make contact with the phe-
as(O(p)) =(O(p))- nomenological behavior, note that the asymptotic damping
function from the classical limit of the pseudo-Langevin
IV. APPLICATIONS equation(5) is V"7(z) =mw37(z) and has the dimension of
a frequencyfit is indeed the counterpart 6§(z)/m of the
standard SPR modglso for the Drude form(52) we will
In the case oDhmic dissipatiorthe memory is Markov-  deal with the corresponding dimensionless input parameters
ian, n(t)= nd(t—0), corresponding toy(z) = »=const and
then tok,|n|, so one can see that the coordinate fluctuation P=Mwyn, wp=wplwg. (55
a(q), Eq.(20), is divergent, as well ag(q), Eq.(18). This
is due to the unphysical assumption of a vanishing responsthe dimensionless term«, reads then
time from the dissipation bath; in the standard SPR model
such divergencg3,5-7 only affects the momentum fluctua- M= e Gl
tion, leaving the possibility to meaningfully evaluate thermal Kn= 9D fo
averages of coordinate-dependent quantifig&s As when
considering momentum-dependent quantifigsin the stan-  wherefp= Bh wp/2=(g/2t) wp.
dard case, in the anomalous SPR model we are therefore Using the dimensionless parameter
forced to take into account the finite bath’s response time.

A. Drude response model

=a,, (56)

The Drude model of an exponentially decaying memory, F(x)= Bhw(X) :g o(X) (57)
2 2t o
n=0Mnwpe 0, FH=——" (52 -
wptz in the place ofw(x), from the definition£18), (19), and(20)
we obtain
is the simplest one that is physically meaningful: the constant
7 characterizgs the strength of the coupling with the dissipa— * (mn)2+(1+a,)fA(X)
tion bath, while the Drude frequenayp characterizes its m(x)= Z In 5 ) (58
bandwidth @51 is the response timethe Ohmic limit oc- n=t (mn)
curs forwp—». " ”
vt X
NO=— X S . (659
B. Single particle in the double well g% n=== (7n)?+(1+a,)f?(x)
Given a potentiaV(q), it is convenient to provide a di- ,
mensionless formulation by identifying characteristic energy 9 l1+a,
d length scales; and . The fi id be a barri ()= (69
and length scales; and o. The first one could be a barrier 20"t i=1 ()24 (1+a,)F2(X)
height or a well depth, the latter is such that the changé¢ of
over its scale is comparable & The dimensionless coordi- where\ = (p2)).
nate isx=q/o and the dimensionless potentiglx) is such The example we choose here is the double-well potential,
thatV(ox)=ev(x). If X, is the absolute minimum af(x)
and v"=v"(X,,), the harmonic approximatiofHA) of the v(X)=(1—x3)?, (61)
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FIG. 1. Configuration densitfP(x)=(5(X—x)) of the double-
well quartic potential forg=2, t=1, and different values of the
damping parametersy=1, 2 (as indicated on the pictureand

FIG. 2. Average potential energys(X)) of the double-well
quartic potential vs reduced temperataydor g=2 and different
values ofn and wp. Curves and symbols as in Fig. 1.

wp=1 (long-dashed lingsand 5(short-dashed lingsThe solid line

is the nondissipative effective potential result fp«=0, that agrees show an increase of the potential energy, corresponding to

with the corresponding exact resdiilled circles; the dotted curve  the higher fluctuations of the coordinate, while for the stan-
corresponds to the classical limit, and the dash-dotted curve reportgard SPR model the opposite occurs.

the result of the standard SPR model from Héf. for an Ohmic
dissipative strengthy= y/ =5,

issipative strengthy=y/(mw,) C. ¢* chain
which has two degenerate symmetric minimaxip=*=1
with v”=8. From Eqs(27) and(24) we obtain

The quantum¢* chain with standard dissipation was
studied in Ref[7]; the effective potential approach was pre-
viously applied in the nondissipative cagé&7,12 and

ver(X)=(1=x%)?=3a%(x) +tu(x), (62)  checked through quantum Monte Carlo simulatipg]. It
) can be viewed as the discretized version of a continuum non-
£2(x) = 9_2[3X2+3a(x)_1]. 63 linear field theory, described by tHandampeg Lagrangian
8t N -2 2 02
- 22 (a—d )2+ —y(a.
Equation (63) has to be solved self-consistently with Eq. [,—Ga; 2 2a2(q' gi-1)*+ g v(a)|, (64

(60): we did this numerically; exact reference data can be

obtained only for the nondissipative limit=0, e.g., by nu-  \herea is the chain spacing; is the “relativistic” velocity,
merlca'lly solving the Schidinger equation. _ _Q is the gap of the bare dispersion relati@hjs a constant

In Fig. 1 we reportAthe shape of the coordinate probabilityyith the dimension(mass< length, and periodic boundary
distributionP(x) =(8(x—Xx)), for selected values of the dis- conditions ensure translation symmetry. The local nonlinear
sipation strengthy and bandwidthap, at the couplingg  potential
=2; this gives a ground state energy=0.697 97, with the
next excited level ag;=1.046 37, above the barrier. When
dissipation is switched orfP(x) tends to go farther away
from the classical distributio®;~e ™" due indeed to the has two wells inx,,= =+ 1 [with v"(x,,) = 8], so that the clas-
enhanced fluctuations of the coordinate, and the two-peakesical ¢* chain has two degenerate translation-invariant mini-
structure is eventually lost. This happens by rising either mum configurationsjq; =1} and{q;= — 1}, as well as rela-
or wp: note the strong influence of the latter in increasing thetive minima connecting the two wells, the static “kinks.” In
fluctuations, which diverge in the Ohmic limiip—o. The  the continuum limitia—z the kink configuration is indeed
figure also reports the opposite result for the standard dissH(z) = = tantj{)(z—zy)/c], so that it is localized with a char-
pative model, obtained as in R¢&], which clearly shows acteristic lengtrc/€) and its energy ig=2Gc/3.
the suppression of the coordinate fluctuations towards the The ratio between the characteristic frequedtyof the
classical distribution. guasiharmonic excitations of the system and the energy scale

Typical results found for the average potential energyex defines the quantum coupling paramet@r=Q/ey
v(t)=(v(x)) are displayed in Fig. 2. In the nondissipative =3/(2Gc); the discreteness of the chain is measured by the
case, comparison with the exact data shows that the effectivdnk length in lattice unitsR=c/({a) (R—> in the con-
potential gives very accurate results, in spite of the strondginuum limit). Moreover,t=T/egy is the reduced temperature
coupling. The curves for the anomalous dissipative systemised from now on. The most interesting features appear

v(X)=(1-x%)? (65
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when kinks are excited in the system; for instance, they T T

cause a peak in the classical specific heat&d.2.

Using the dimensionless quantities just introduced, the

Weyl symbol for the undampegd* Hamiltonian can be writ-
ten as

H QR
=5 2 PV (66)
€K i=1
V(g) 3 « [R? , u(a)
o TR |z @G5 (67
where the momenta are such thag,p;1=i6;;, and Eq.(45)

givesm, '=2Q%Rey/3=m" 1.

As for dissipationN identical independent environmental
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FIG. 3. Renormalization coefficiem(t) [Eg. (69)] vs reduced
temperaturet, for different values of the damping strengih at

baths coupled to each momentum are assumed, giving a tyaq coupling paramete©=0.2, kink lengthR=5, and Drude

agonal kernel matrixc, ;= dijjx,, SO EQ.(47) gives
= k. We takex,=|v,|7(|v,|) with the Drude form(52) for
7; the dimensionless quantityyx,, ,=mx,=a, can even-

tually be written as in Eq(56), so that the dissipation is

characterized by the dimensionless parameigis wp/(
and 7=3%/(2QR)

From Eqgs.(42) and (46) the LCA renormalized frequen-

cies are found to be

wi=02[1-3D(t)+4R?sir?(k/2)], (68)
while the relevant renormalization coefficidd{t)=C;; fol-
lows from Egs.(49) and(51),

R 1 -

D=3 § X ngl(qrn)er(lJran)fﬁ’

1+a,

(69

wheref, = Bw,/2=(Q/2t)[1—3D(t) + 4R? sir’(k/2)]; these

two self-consistent equations can be solved numerically, an
it appears that the approximation is meaningful whdén 3
<1. Eventually, the LCA effective potential can be written

as the original one, just replacing the local interactidqm)
by

ver(X)=[1—3D(t)—x%]?+6D?(t) +tu(t), (70
with

1R o (TP (Ltayfi

rO=73"§ ; nzl In (mn)2 71

For any parameter set,(Q, R, 7, wp) the self-consistent
computation ofD and hence of the last term @f, which

takes a negligible computer time using a continuum termina-

cutoff frequency wp=1. Solid line, =0 (undampey short-
dashed line,7=1; long-dashed liney;=2; dash-dotted line;y
=5. Note thatD(t) increases whe increases.

cally using a discrete mesh for the values of each degree of
freedom. Temperature scans over the region of interest were
performed and several thermodynamic quantities were calcu-
lated, taking the value “per site” for the extensive ones. In
particular, the internal energy(t)=f(t)—to,f(t) and the
specific heatr:(t):atu(t)z—taff(t) follow from the free
energy per sitef(t)=—N"1tInZ(t) by numerical deriva-
tion, while Eq.(35) was used to calculate the thermal aver-
age of the squared site coordingf§) and of the local po-
tential (v(Q;)), the square nearest-neighbor displacement
((§i—@i_1)?), and the square momentufp?). The quanti-
ties reported in Figs. 3, 4, and 5 are evaluated for fixed
values of the kink lengtiR=5 and of the quantum coupling

=0.2, which give fairly strong quantum effects. For com-

arison, we also report the classical result corresponding to
Q=0. Moreover, a fixed representative value of the Drude
cutoff frequencywp=1 is used, in order to analyze the de-
pendence upon the dissipation strength

As we already remarked, the pure-quantum fluctuations of

the coordinate are made stronger by the anomalous dissipa-
tive coupling. This appears in Fig. 3, where the pure-
quantum renormalization coefficieBi(t) = (£2)) of Eq. (69)
is reported for different values o, starting from the non-
dissipative valuep=0. The temperature dependence of the
coefficientD(t) affects the effective potential and the free
energy, allowing us to describe how the classical behavior of
thermal averages is affected by both quantum and dissipative
effects.
In Fig. 4 the temperature behavior of the mean-square

. . : ; : - PN _
tion of then summation, completely determines the effectivefluctuations of the site coordinate’) is reported. At=0,
potentialuex(x). The problem is then ready for a numerical in the classical case the coordinate lies in the minfma

evaluation of Eq.(35), which gives the partition function

=1} of the potential67), while in the quantum nondissipa-

(setting®=1) and the thermal averages of observables. Wéive case the value at=0 is smaller,(4?)=1—3D=0.84:

employed the numerical transfer matrix techniq@8] that

this corresponds to the minima 0fx(q) and reflects the fact

reduces the configuration integral for a one-dimensional arthat quantum fluctuations make the configuration to climb
ray with nearest-neighbor interaction to a secular integrathe barrier rather than the steeper walls. Switching on the
equation. The evaluation of the latter is implemented numeritemperature enhances the same effect (@il decreases at
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Vo 7 (dissipative harmonic contributiondc(t) =c(t) —cy(t), is

' very sensitive to the nonlinearity of the system, since its
value is zero in a harmonic approximation. The fact that our
approach retains all classical nonlinear features is crucial for
getting 6c, whose temperature behavior is reported in Fig. 5.
Switching on and increasing the strength of the environmen-
tal coupling# the curves can be seen to go farther apart from
the classical one, which is a nontrivial result. A physical
explanation is that anomalous dissipation increases the un-
certainty in the kink positions, substantially making them
longer and effectively raising their mutual interaction.

V. CONCLUSIONS

0.0 0.2 0.4 0.6 0.8 L0 In this paper we have discussed the problemawoéma-

lous dissipation previously considered by Leggd®], and
FIG. 4. Mean-square fluctuations of the coordinate operatofl€rived the effective potential formalism for an interacting

(6% vs reduced temperatute Parameters and lines as in Fig. 3. many-body system with this kind of dissipation, which can
The dotted line represents the classical resQit=Q). arise from a microscopic description of the system-bath cou-

pling, as done, for instance, in R¢i.0].
finite temperature, until when at0.5 many kinks are ex- Our approach allows one to reduce quantum mechanical

cited in the system and the coordinate distribution begins téhermodynamic calculations to a classical-like configuration

spread towards the walls, causing the subsequent increaedral, where both quantum and dissipative effects are in-
from a minimum value~0.56 att~0.45, eventually collaps- cluded. In order to deal with many degrees of freedom the

ing onto the classical curve. At variance with the case of?€cessarnyow-couplingapproximation has been introduced.
standard dissipatiofi7], when the damping strength is The latter, if the system’s symmetries are exploited, results in

switched on, a further enhancement of the distribution sprea}ﬁery simplt—; expressions fof the renorm.alizatio'n coefficients
occurs: this could be qualitatively interpreted as an effectivéPPearng in the theory. This is shown in detail for the case

. . A of translation symmetry.
increase of the quantum coupling and allofdg) to reach Applications of the framework have been made to the
smaller values, at smaller temperature.

On the other hand, the fluctuations of the momenta arsmgle particle in a double-well potential and to a discrgfe

. . ne-dimensional field, whose strong nonlinearity yields kink
quenched _by dlSSlpatlon_, and the _rol_e of the da_mplng eﬁeCtgxcitations that play a dominant r?)le. In bothye):(amples a
is nonpredictable on a simple basis if one considers therm(brude—like spectrum of the environmental coupling has been

dyn.amlc quantiies where b.Oth coordln.a%tes and momenta ®hosen for dissipation, and its influence on thermal quantities
ter into play. One of these is the specific heét). Its non-

) . i . _has been analyzed.
linear part, namely, its total value minus the corresponding The effective potential is a unique tool for dealing with

such a system, since any approximate theory must retain the
strong nonlinearity, which mainly has a classical character,
and this rules out conventional perturbative approaches. The
method proved to be useful for the above model systems, so
it is expected that it will find application in up-to-date physi-
cal problems. A possible application of the formalism regards
02k AN | the effect of the blackbody electromagnetic fi¢lD] onto
) /i NN the phase diagram of two-dimensional Josephson junction
i arrays.

03l |

Réc

P - ~. a0

~nr.

L | L Il L | -
0'%.0 0.1 0.2 0.3

FIG. 5. Nonlinear contribution to the specific heat, defined as

t

0.4
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APPENDIX A: STANDARD SPR MODEL

Eliminating the bath variables from the equations of

sc(t)=c(t)—cp(t) (times the kink lengtiR), vs reduced tempera- motion for the standard SPR modél) one gets[4]
turet. Parameters and lines as in Fig. 3. The dotted line represent§e Langevin equation(2), where the coupling with

the classical result@=0). Increasingy, dc(t) goes farther away

from the classical behavior, as@ were raised17]

the bath is described by the memory functiop(t)
=0(t)=,m, w2 cos@,t), whose Laplace transform is
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t
Y z2)=>, m/w?/%, (A1) m/wz/dB(t)=V’(d(t))—f dt’ codw, (t—t")]
/ Z°+ wy —oo
and by the Gaussian random foriéét), whose time correla- X V@), B3)
tors can be expressed in terms of the memory function b
spectral relationg4] depending on the bath’'s temperature.
The quantum thermodynamics, after the bath has been

¥ind the homogeneous solution

“traced out” in the path-integral for the systefd), is de- Ah ey A P, .
scribed by the density matrs] (=0, codw )+ m,w, S 1). B4
p(q"q') = fq"D[q(u)]exp{—S[q(u)]—S|(q(U))}, Inserting this result in EqB1) one gets Eq(5), where
’ (A2) L
7()=0(1)2 —cogw,t), (B5)
Aiduim. , 7 m,
S[q(u>]=f0 — |0 W+Viaw]| (A3
while the fluctuating force term
andS, given in Eq.(3); the Matsubara transform of the ker-
nel k(u) reads A .
) F)=m>, 7830 (B6)

2
n

. 14
k(we "= mei—5——75 (Ad) _ _ _
7 Vit o is a Gaussian random process, whose correlations arise from
the assumption that the initial valuég,,p,} correspond to
and is thus given bk, =|v,|7(|v,|). For a harmonic poten- the equilibrium at the temperatufe= 8~ for the isolated

tial, V(q) =mw?g?/2, the evaluation of the path integral can bath, namely, (q,4,/)=45,, (%/2m,,)coth(Bhaw,I2),

Brdu

k=| —
" Jo Bh

be performed exactly and the density matrix turns out to be ap,p,)=6,,(hm,w I2)coth@Bhw,I2), (q,0,)
Gaussian with partition function and variances as follows= 5, ,i#/2.
[5]: The thermal density matrix for the harmonic oscillator,
V(q) =mw?q?/2, can be evaluated reducing the problem to
1 5 v the standard-dissipation one, just by performing the canoni-
= Bﬁwnl:[l 2+ w+k,/m’ cal transformatiorg— — p/(mw) and p— mw(; to get ex-

actly the same form of Eq1) it is sufficient to replace

m 2 WPk dm —mwd,, 4,——p,/(Mw), and m,—(mw)?(m,w?).
PHu=—= > # One finds, of course, Eq$A5) with the exchange of the
B n=== it o’ +ky/m expressions (6% — (Mw) ~4(p?)y and  (p?)y
—(mw)%(§?%). Due to the above redefinition of the bath
1 ” 1 masses {m,}, the kernel (A4) takes the form k,
(O Bm 2. 25 2k (A5 —(mw)2y, with
In the nondissipative limitk,—0, the summations give o 1 .
the well-known results Z,=1/(2 sinhf), (&), N (B7)
=(hl2mw)cothf, and (p?)y=(Amw/2)cothf, with f
=Bhwl2.

so eventually one has

APPENDIX B: ANOMALOUS SPR MODEL

1 = v?
From the Hamiltoniar{4) we get the equations of motion Zh= Bho ok V2+(1+:T'IK Yo? (B8)
- n n
P (A m 24 1A
mo+V' (@)= —[me?g,-V' (@],  (BY - 2
o By > . (89)
. - R "B v§+(1+mKn)w2’
m,(q,+wyq,)=V'(Q); (B2
the second one has the general solutign(t)=q"(t) (6= t - 1+ me, 5 (B10)
+@P(t), with the retarded form of the particular solution MB n==a i+ (14 miy) o
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APPENDIX C: ANOMALOUS INFLUENCE ACTION and of the dissipative actiof6). In the calculationsg is to

be regarded as a fixed parameter and we can omit to explicit
éhe dependence off and w? on it. Performing the shifty,
—q+4q, and using the Fourier representation

1 shdu dz shdu
e St T § Dip, (w)lexs(-Sol{p(w)}]) i ! %qu):Bmwz Zexp( /! ;imwzzqu)
c 02

For the bath part of Eq4) the Feynman-Kac expression
in terms of the momentum can be used: the definition of th
influence action is, therefore,

where Zg=11 (2 sinhw,) ! is the partition function of the one gets
isolated bath, and the bath action reads

_ _ dz
po(P.q; ):Bmwze_ﬁwfzf D[py,dul

shd 1 :
ss=f0 7”2 el LACIRTATACI O
i 2 xexp{—Si[py ,Quid]~S[pul}, (D3

Performing the Fourier transformation into Matsubara com—hS fﬁﬁd i 2 me3qg?
1= u

ponentsp(u) =3 p,e'’"" [and same fop,(u)] one gets E(QUbu_puqu)+ ﬁJr > —imw?zq,

ﬁ 2 2 i .
Se=2 P 2 [vilpol+ 0Zlpm=pal?] + 5 (GoPs— Potp) +il(Q—do)P— (Pg— Po)],
V202 (D4)
_ 2, 2\5, (24 N7 2| -
2 2m, w? ; (0[Pl vi+ wilpn| where ¢=q—g. To eliminate the linear term we shift now

+ .
(C3) qLI_)qLI IZ’

where the variable shifp,,=p,,—[w?%/(v3+ w2)]p, has %(p,q;a)zlgmee*ﬁwf Eefﬂmwzzzlz
been performed. The path integral oy®r(u) gives just the 2m

partition functionZg, so one is left with theanomalousin- .
fluence action X f Dlpy,qulexp{—S[py.du:al=Silpul},
B < (D5)
Slpwl=5 2 xalpol® (C4)
n=- so thatS, is the harmonic-oscillator action,
i.e., Eq.(6), wherek, is again given by Eq(B7), so that T 2 2.2
comparing with the Laplace transform of the memory func- hS,= fﬂ du '_(q Pu—Puy) + —— + Mo Gy
tion (B5), 0 2 Uy FURWE T om 2

i :
2= c5) + 5(doPs—Potlp) +il(ds—Go)P
7 my A +(,()/
(P POE-i2)]. (06)

Now, the point is to get rid of the path integral appearing in
APPENDIX D: EVALUATION OF FO EOR ONE DEGREE Eqg. (D5), which represents the Weyl symbol for the density
OF FREEDOM operator of the harmonic oscillator with the dissipative ac-
tion S| p,]. However, the result for the harmonic oscillator
Let us start from the definitiof4) of the reduced density with anomalous dissipation is known from EdB8), (B9),
in terms of the system’s trial action, given by Eg) withthe  and (B10),
trial potential(12),

one hask,=|v,|7(|v,|) , i.e. EQ.(7).

— _n2 A2
2me M e p/Z)\Te q2at

po [i . p mo?(dy—a)°
- — — v B ,q)= , D7
7Sy fo dul 5 (auPy=Pyl) + 5+ W+ > pH(P, ) Bo  J2mn: \Zmar (D7)
i
+ E(qopﬁ_ Podg) +i[(dg—do)P—(Psg—Po)dl, where the partition function from EdB8) is written asZ
=e */(Bhw) and u given as in Eq(18). One gets, there-
(D1)  fore,
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— _ dz .
po(p,q:q)=ﬁmwze‘ﬁwf F-e AT (p g ~iz).

(D8)

PHYSICAL REVIEW E 64 066124

The path integralE3) corresponds to the density matrix of a
harmonic system with anomalous dissipatippa(p,q). The
canonical exchangg,—p, andp,— —q, has the effect of
turning the dissipation into standar&[p,]—S[q,]; per-

This last Gaussian convolution affects the coordinate parforming the same transformation onto the external variables

and results in a Gaussian fgrwith the pure-quantum vari-
ancea= at— 1/(mw?pB) reported in Eq(20): what is sub-
tracted is just the classical contribution, i.e., the0 term in
Eqg. (B10). The final result is just Eq.16).

APPENDIX E: EVALUATION OF p, FOR MANY
DEGREES OF FREEDOM

We evaluate here the path integfall) with the trial ac-
tion S, [i.e., Eq.(33) with the “potential” (34)]; the fixed
argument ofw(qg) and of the matrixB(q) is omitted in the
following. First, theé function is represented as

Bdu dz
_ _ — 2
5(q fo B qu) det 5B )j (27)N

X exp{ i Joﬁdutsz(qu—@} , (E1)

and the exponential can be incorporated into the acign
then, performing the shiff,— g,+ g+ iz and introducing the
fluctuation variable€=qg—q one gets

e Pw 1, .
ex —EIZCC z

_ — dz
po(P,G; Q)= deCeo

(2m"

pra(p:é—i2),
(E2)

whereC;'=pB? and

pHA(p.q)=f D[Py, Gulexp{ — S[Py .Gy ;P Gl — S1[ Py, Gy d]
—S[pul} (EJ

with

S, = Bﬂ[t A?p,+ 'q,B%qy] (E4)
1 02 PuA™Py Qub dul-

(p,g) and exchanging the matricé€«— B2, an exact corre-

spondence with the standard dissipative harmonic system is

establishedpya(p,0) = pus(d, — p), and the known result for
a harmonic system with standard dissipafi@dhcan be used,
eventually getting

1t -1 1t -1
e-un X —50G7a) exp5pALTP
PralP. 9= 45 GAB S . ,
e(BAB) (2m)NdeC, (2m)NdetA,
(E9
where
Z de(12+W,)
/*LH:Z n n2N . ’ (EG)
n=1 Iz
1 & v
Cy=— B1_——"—B1 E
"B Vﬁ-i-‘I’n a
A L s B ! B (E8)
H B e vﬁ+‘l’n '
and
W, =B[A2+K,]B. (E9)

Eventually, the Gaussian convolution in E§2) washes out
then=0 component ofC, leaving

_ _ 1
po(P,C; ):(ﬁ

N/2 . .
do &Pl Blw(a) + ()]}

1 1
ex;{ - thC* g ex;{ztpAlp}
J2mNdeC  (2m)NdetA
whereC=Cy—Cc and A=Ay

(E10

[1] P. Ullersma, PhysicdAmsterdam 32, 27 (1966; 32, 56
(1966; 32, 74 (1966; 32, 90 (1966.

[2] R. Zwanzig, J. Stat. Phy8, 215(1973.

[3] A. O. Caldeira and A. J. Leggett, Ann. Phydl.Y.) 149, 374
(1983.

[4] G. W. Ford, J. T. Lewis, and R. F. O’Connell, Phys. ReBA
4419(1988.

[5] U. Weiss,Quantum Dissipative Systep#nd ed.(World Sci-
entific, Singapore, 1999

[6] A. Cuccoli, A. Rossi, V. Tognetti, and R. Vaia, Phys. Re\voE:
4849(1997).

[8] A. Cuccaoli, A. Fubini, V. Tognetti, and R. Vaia, Phys. Rev. B
61, 11 289(2000.
[9] A. J. Leggett, Phys. Rev. B0, 1208(1984).

[10] F. Sols and I. Zapata, iNew Developments on Fundamental
Problems in Quantum Physicedited by M. Ferrero and A.
van der MerweKluwer, Dordrecht, 199)7

[11] R. P. Feynman and F. L. Vernon, Ann. Phyal.Y.) 24, 18
(1963.

[12] A. Cuccoli, R. Giachetti, V. Tognetti, P. Verrucchi, and R. Vaia,
J. Phys.: Condens. Matt& 7891(1995.

[7] A. Cuccoli, A. Fubini, V. Tognetti, and R. Vaia, Phys. Rev. E [13] R. Giachetti and V. Tognetti, Phys. Rev. Lei, 912(1985.

60, 231(1999.

[14] R. P. Feynman and H. Kleinert, Phys. Rev34 5080(1986.

066124-12



QUANTUM THERMODYNAMICS OF SYSTEMS WITH . .. PHYSICAL REVIEW B4 066124

[15] F. A. Berezin, Usp. Fiz. Naukl32 497 (1980 [Sov. Phys. [17] R. Giachetti, V. Tognetti, and R. Vaia, Phys. Rev38, 1521

Usp. 23, 763(1980]. (1988; 38, 1638(1988.
[16] A. Cuccoli, V. Tognetti, P. Verrucchi, and R. Vaia, Phys. Rev. A [18] W. Janke and T. Sauer, Phys. Lett187, 335(1995.
45, 8418(1992. [19] T. Schneider and E. Stoll, Phys. Rev.2R, 5317(1980.

066124-13



